181. The Configuration of Certain Diphenyl Compounds indicated by their Dipole Moments.

By R. J. W. Le Fèvre and H. Vine.

An attempt has been made to determine whether a diphenyl molecule in which large (" obstacle ") groups are situated in the $2: 2^{\prime}$-positions has a configuration in which carbon atoms $4: 1: 1^{\prime}: 4^{\prime}$ are collinear. The general plan has been to measure the moment of the $2: 2^{\prime}$-disubstituted diphenyl and compare it with the value for the related substance in which an additional pair of substituents has been inserted in the $4: 4^{\prime}$-positions. The results are not in disagreement with the generally accepted view that the spatial arrangement of all derivatives of diphenyl is rectilinear. Small changes in moment with every pair of compounds have been found, but it has not been possible to decide whether these have arisen from departures from linearity or from other causes. Several of the compounds appear to be non-planar, with their benzenoid rings approximately at right angles.

All discussions of the factors determining the configuration of a dissymmetric diphenyl molecule (Le Fèvre and Turner, Chem. and Ind., 1926, 45, 831 ; Bell and Kenyon, ibid., p. 864 ; J., 1926, 3045 ; Mills, Chem. and Ind., 1926, 45, 883, 905) have assumed that, when groups of considerable size are present in the $2: 2^{\prime}$-positions and are operating to stabilise a non-planar molecule, carbon atoms $4: 1: 1^{\prime}: 4^{\prime}$ lie approximately along a straight line. No direct experimental evidence for this assumption has yet been advanced, although the rectilinear configuration of the parent hydrocarbon and a few 4:4'-disubstituted derivatives has been indicated by various X-ray and dipole-moment examinations.

In the present work an attempt has been made to supply this deficiency by examining the changes in dipole moments of some 2: 2^{\prime}-disubstituted diphenyls caused by the insertion in the $4: 4^{\prime}$-positions of two radicals whose " group moments" lie along their directions of attachment to the aromatic carbon atoms; on the view that the configuration of the molecule is controlled only by the properties of the two o-substituents and that the $4: 1: 1^{\prime}: 4^{\prime}$ carbon atoms are collinear, the moment of the tetrasubstituted compound should not differ from that of the disubstituted one by an amount greater than that which might be expected to arise from intramolecular induction effects.

Comparisons have been made among the following substances * (the necessary experimental observations are tabulated later) :

(I.)
$\mu=5 \cdot 19$.

(VI.)
$\mu=2.16$.

(II.)
$\mu=4.90$.

(III.)
$\mu=4.92$.

(VII.)
$\mu=1.99$.

(VIII.)
$\mu=0.66$.
$\mu=0.66$.

(IV.)
$\mu=4.38$.

(IX.)
$\mu=0.75$.

(V.) $\mu=2 \cdot 42$.

(X.) $\mu=1 \cdot 30$.

* All dipole moments are given in Debye units (e.s.u. $\times \mathbf{1 0}^{\mathbf{- 1 9}}$).

Without correction it would appear that the two $\mathrm{C}-\mathrm{X}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}\right.$, or $\left.\mathrm{NO}_{2}\right)$ vectors in (II), (III), and (IV) lie at angles of $165-170^{\circ}$; but before conclusions can be drawn from these data, estimations of the mutual effects of the substituents must be made. As an example, the case of the di- and tetra-nitrodiphenyls may be set out in some detail. A dipole situated at the origin (Fig. 1) and lying along the x axis will induce in a body P of polarisability α a moment whose vertical and horizontal components are μ_{y} and μ_{x} respectively. These (Smallwood and Herzfeld, J. Amer. Chem. Soc., 1930, 52, 1919 ; Frank, Proc. Roy.Soc., 1935, 152, $A, 171$) are given by:

$$
\begin{aligned}
& \mu_{x}=\mu \alpha\left(3 \cos ^{2} \theta-1\right)(\varepsilon+2) / 3 \varepsilon r^{3} \\
& \mu_{y}=3 \mu \alpha(\sin \theta \cdot \cos \theta)(\varepsilon+2) / 3 \varepsilon r^{3}
\end{aligned}
$$

and may be written as $R_{x} \mu \alpha(\varepsilon+2) / 3 \varepsilon$ and $R_{y} \mu \alpha(\varepsilon+2) / 3 \varepsilon$.

The application to the present problem is made on the basis of the dimensions indicated

Fig. 1.

in Fig. 2. It is supposed that the plane of the ring (l) is rotated through an angle χ with respect to that of (2), and three axes meeting at Q have been taken, a passing through the centres of the two rings, b in the plane of (1), and c in that of (2). Values of R_{x} and R_{y} necessary to the calculation of the component induced moments parallel to b are tabulated below. On account of the symmetry of the model, the sum of the components R_{a} is zero, and those of R_{b} and R_{c} are equal. For the purpose of calculation, angles and distances have been measured between the centres of the nitrogen atoms.

(A)	Induction by μ_{1} on $\left(\mathrm{NO}_{2}\right)_{3}$	r, A.5.0	$\begin{gathered} \theta . \\ 150^{\circ} \end{gathered}$	R_{b}.	
				$R_{x}=0.0100$	$-0.0087 \times 10^{24} \mathrm{~cm} .^{-3}$
				$R_{y}=0.0104$	$+0.0052$
(B)	Induction by μ_{1} on $\left(\mathrm{NO}_{2}\right)_{4}$	$6 \cdot 3$	83	$R_{x}=0.0039$ $R_{x}=0.0015$	+0.0034 +0.0008
(C)	Induction by μ_{3} on $\left(\mathrm{NO}_{2}\right)_{1}$	$5 \cdot 0$	150	$R_{y}=0.0015$ $R_{y}=0.0104$	-0.0008 +0.0104
(D)	Induction by μ_{4} on $\left(\mathrm{NO}_{2}\right)_{1}$	$6 \cdot 3$	157	$R_{y}=0.0043$	+0.0043
					$=0.0138 \times 10^{24} \mathrm{~cm} .^{-3}$

The resultant difference to be expected between the moments of the two substances under consideration, due to intramolecular induction, is therefore

$$
0.0138 \times 10^{24} \cdot \mu \alpha(\varepsilon+2) .2 \cos \frac{1}{2} \chi / 3 \varepsilon
$$

The moment of the $\mathrm{C}-\mathrm{NO}_{2}$ group, μ, is $4 \cdot 2$; the dielectric constant of the medium, ε, is assumed to be 2.4 (Le Fèvre and Le Fèvre, J., 1937, 196); χ is probably ca. 90° (see below). Smallwood and Herzfeld (loc. cit.) used the value $2.75 \times 10^{-24} \mathrm{~cm} .{ }^{3}$ for the polarisability of the nitro-group, which they derived from the octet refractions. On insertion of these figures in the above expression, the net effect should be to reduce the moment arising from the $2: 2^{\prime}$-dinitro-groups by $0 \cdot 14$.

The reduction actually observed is 0.81 , which could be accounted for if α were as high as 16×10^{-24}. Such a value is considerably greater than that derived from the refraction.

In the other compounds examined, the action of induction effects similarly is scarcely adequate to explain the observed results. It is noteworthy, however, that the ratio between the reduction of moment in passing from (I) to (IV) and the increase of moment from (VIII) to (X) is almost exactly that between the molecular refractions of the nitroand the methyl group $(0.81: 0 \cdot 64=7 \cdot 3: 5 \cdot 7)$. This, of course, is consistent with the view that the change of moment has its cause chiefly in polarisation of the $2: 2^{\prime}$-substituents by the polar links at the ends of the molecule. The cases (V)-(VII) are more complex owing to the size and possibilities of intramolecular rotation inherent in the carbomethoxygroup; nevertheless, they qualitatively resemble (I), (III), and (IV), consistently with the $-I$ polarity common to the $\mathrm{C}-\mathrm{NO}_{2}$ and the $\mathrm{C}-\mathrm{CO}_{2} \mathrm{Et}$ group.

In conclusion, it therefore appears that if any weight can be attached to calculations of the type made above, electrostatic induction effects within the molecules are insufficient to account for the observed changes in moment when the $4: 4^{\prime}$-groups are introduced. In view, however, of the uncertainties involved, no definite conclusion can be drawn at the present time.

These uncertainties arise, not only in connexion with the actual magnitudes of α, ε, r, and θ which are used in the calculations, but also from the unknown " anomalous" solvation effects and the possibility that the average angle χ can be modified by the $4: 4^{\prime}$ substituents. The former is not likely to be considerable (p-dinitrobenzene shows an excess of total polarisation over refractivity in benzene of $c a .10$ c.c.), but the latter will probably be much more significant (cf. data for the rates of racemisation of certain 5substituted dissymmetric diphenyls; Yuan and Adams, J. Amer. Chem. Soc., 1932, 54, 4434 ; Chien and Adams, ibid., 1934, 56, 1787).

It is noteworthy that if a uniaxial and regularly hexagonal carbon skeleton be assumed for substituted diphenyl molecules and if link moment values for $\mathrm{C}-\mathrm{NO}_{2}$ and $\mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$ of $4 \cdot 2$ and 2.0 be adopted ($4 \cdot 2$ is the moment of 4 -nitrodiphenyl; no value for the corresponding methyl ester is available) then the mean angles χ, which are given by

$$
\cos \chi=\frac{2}{3} \mu_{o b s}^{2} / \mu_{\operatorname{link}}^{2}-1
$$

are in both cases $c a .90^{\circ}(\cos \chi=0.017$ and -0.023 respectively).
The moments reported by Bretscher (1.72; Helv. Physica Acta, 1929, 2, 257) and Weissberger, Sängewald, and Hampson ($1 \cdot 77$; Trans. Faraday Soc., 1934, 30, 884) for $2: 2^{\prime}$-dichlorodiphenyl and by the last authors for $3: 3^{\prime}$-dichlorodiphenyl ($1 \cdot 68$), considered in conjunction with a $\mathrm{C}-\mathrm{Cl}$ link moment of $1 \cdot 6$, similarly indicate χ values between 90° and 100°. The somewhat greater moment of the $2: 2^{\prime}$ - compared with the $3: 3^{\prime}$-dichlorodiphenyl has been attributed by Hampson and Weissberger to the operation of London forces (J. Amer. Chem. Soc., 1936, 58, 2111), leading to a reduction in the angle χ.

The moment of diphenic anhydride is also included in the table of results on p. 972. This substance contains a seven-membered ring, which from its ease of formation is presumably strainless. It is therefore of interest to compare this result with data for three five-ring anhydrides, recently reported by Govinda-Rau and Anantanarayanan (Proc. Indian Acad. Sci., 1937, V, 185) as follows:

Our value for diphenic anhydride is practically identical with that found by the Indian authors for phthalic anhydride.

Experimental.

Preparation of Materials.-The 2: 2'-dinitrodiphenyls were prepared by the method of Ullmann and Bielecki (Ber., 1901, 34, 2176). The reaction with copper powder took place at $240-245^{\circ}$ in the case of 2 -chloro- and $2: 5$-dichloro-nitrobenzene, at 210° with $2: 5$-dibromonitrobenzene, and in boiling nitrobenzene solution in the case of 2:4-dinitrochlorobenzene. $4: 4^{\prime}$-Dibromo-2 : 2^{\prime}-dinitrodiphenyl, recrystallised from benzene, had m. p. 142°, which was 4° higher than that recorded by Ullmann and Bielecki.

Methyl diphenate and diphenic acid were obtained by addition of diazotised methyl anthranilate and anthranilic acid respectively to an ammoniacal solution of cuprous oxide (Vorländer and Meyer, Annalen, 1902, 320, 122). By nitration of diphenic acid with fuming nitric acid, $4: 4^{\prime}$-dinitrodiphenic acid was formed together with the $4: 6^{\prime}$-dinitro-derivative, from which it was separated by recrystallisation of the barium salt (Hummel, Annalen, 1878, $193,131)$. It was readily esterified with methyl alcohol in the presence of hydrogen chloride (Schultze, Annalen, 1880, 203, 98).

4:4'-Dibromodiphenic acid has previously been obtained only by oxidation of 2 : 7-dibromophenanthraquinone (Schmidt and Junghans, Ber., 1904, 37, 3569; Underwood and Clough, J. Amer. Chem. Soc., 1929, 51, 585), and from 4: 4'-diaminodiphenic acid by the Sandmeyer reaction (Schmidt and Junghans, loc. cit.). Since 5-bromo-2-aminobenzoic acid is readily obtained by bromination of anthranilic acid (Wheeler, J. Amer. Chem. Soc., 1909, 31, 568), an application of Vorländer and Meyer's reaction to this substance offered a more convenient means of preparing the required dibromodiphenic acid. The bromoaminobenzoic acid (18 g .) was dissolved in 300 c.c. of 3 N -sulphuric acid, and sodium nitrite (6 g .) added at 0°. The filtered liquid was allowed to run slowly into a solution of cuprous oxide (from 26 g . of cuprous chloride) in ammonia ($d 0.88,56$ c.c.), the mixture being well stirred and the temperature kept below 20°. Nitrogen was evolved, and after standing for $\frac{1}{2}$ hour the mixture was heated to boiling and carefully acidified with concentrated hydrochloric acid, the thick bluish-green precipitate then being replaced by a pale yellow granular one of crude dibromodiphenic acid (16 g .). The product was purified by boiling for 10 minutes with acetic acid (50 c.c.), water (20 c.c.), and powdered zinc (3 g .), l g. of animal charcoal being added at the end. After filtration, addition of water, and cooling, the acid crystallised in yellowish-white leaflets, m. p. 277-278 .

Methyl $4: 4^{\prime}$-dibromo-2: 2^{\prime}-diphenate was obtained by saturating a methyl-alcoholic solution of the acid with hydrogen chloride and warming it on the water-bath for a short while. The ester crystallised on cooling, and after being washed with sodium carbonate and recrystallised from methyl alcohol, formed colourless leaflets, m. p. 124° (Found: C, 44.4; H, 2.8. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Br}_{2}$ requires $\mathrm{C}, \mathbf{4 4 \cdot 9} ; \mathrm{H}, \mathbf{2} \cdot 8 \%$).

Diphenic acid was converted into its anhydride by heating with acetic acid and acetic anhydride (Bischoff and Adkins, J. Amer. Chem. Soc., 1923, 45, 1032). When $4: 4^{\prime}$-dibromodiphenic acid (4 g .) was heated with a boiling mixture of acetic acid (8 g.) and acetic anhydride (8 g .), it changed rapidly into a white powder, which, after boiling for 15 minutes, was filtered and dried. It was very sparingly soluble in organic solvents and was not recrystallised, but was found to consist of microscopic transparent needles (Found: C, 44.4; H, 1.8. Calc. for $\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{Br}_{2}$: C, $44 \cdot 0 ; \mathrm{H}, 1.6 \%$). The m . p. was 316°, in disagreement with $304-305^{\circ}$, recorded by Underwood and Clough (loc. cit.) for an anhydride prepared by a similar method, but with more prolonged heating and with larger quantities of acetic acid and acetic anhydride.

Attempts to prepare 4:4'-dinitrodiphenic anhydride by a similar method were unsuccessful, as reported by Schmidt and Kämpf (Ber., 1903, 36, 3743) and by Underwood and Kochmann (J. Amer. Chem. Soc., 1924, 46, 2074).

2 : $\mathbf{2}^{\prime}$-Dimethyldiphenyl was obtained by heating o-iodotoluene with copper powder in a sealed tube (Ullmann, Annalen, 1904, 332, 42). 4:4'-Dichloro-2: 2'-dimethyldiphenyl was prepared from m-tolidine ($4: 4^{\prime}$-diamino-2 : 2^{\prime}-dimethyldiphenyl) by the Sandmeyer reaction. m-Tolidine hydrochloride (100 g .) was suspended in 10 N -hydrochloric acid ($350 \mathrm{c} . \mathrm{c}$.) and diazotised by addition of sodium nitrite (50 g . in $200 \mathrm{c} . \mathrm{c}$. of water) at 10°. The filtered solution was gradually added to a mixture of cuprous chloride (125 g .) and 10 N -hydrochloric acid (200 c.c.), the temperature being kept at about 20°. Nitrogen was evolved and a large amount of sticky brown material precipitated; 41 g . (47% yield) of the required compound were obtained by prolonged steam-distillation, and on recrystallisation from alcohol it formed colourless needles, m. p. 48° (Found : $\mathrm{C}, 67 \cdot 0 ; \mathrm{H}, 4.9 ; \mathrm{Cl}, 27 \cdot 6 . \quad \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2}$ requires $\mathrm{C}, 67 \cdot 0 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{Cl}$, 28.2%).

Ullmann and Frentzel (Ber., 1905, 38, 725) recorded the preparation of $4: 4^{\prime}$-dinitro-2 : $\mathbf{2}^{\prime}$ dimethyldiphenyl by diazotisation of 2 -amino- 5 -nitrotoluene and treatment with cuprous chloride in hydrochloric acid solution. Repetition of their procedure gave large yields of 2-chloro-5-nitrotoluene, which was removed by steam-distillation, together with small quantities of tarry residues. A similar result was obtained with o-nitroaniline; whether the diazotised solution of this base were added to the cuprous chloride solution or vice versa, large amounts of o-chloronitrobenzene only were produced, whereas Ullmann and Forgan (Ber., 1901, 34, 3802) and Ullmann and Frentzel (loc. cit.) stated that in this case, as in several others, reversal of the normal procedure of a Sandmeyer reaction gave quite high yields of diphenyl derivatives. We
have obtained the required substance, 4:4'-dinitro-2: 2^{\prime}-dimethyldiphenyl, by another application of Vorländer and Meyer's reaction. These authors found that reduction of diazotised toluidines with ammoniacal cuprous oxide gave the corresponding azo-compounds, whereas o - and p-nitroaniline, like anthranilic acid and its ester, gave diphenyl compounds (loc. cit.).

w_{1}.	${ }_{625}{ }^{1200}$.	$d_{10^{\circ}}^{20^{\circ}}$.	$\boldsymbol{a} \varepsilon_{2}$.	β.	$n_{\text {D }}{ }^{5}{ }^{\circ}$.	r_{12}.	$\left[R_{L}\right]_{\text {D }}$.
0	2.2725	0.87378	-	-	1.49724	$0 \cdot 33503$	-
I. 2: $\mathbf{2}^{\prime}$-Dinitrodiphenyl.							
0.004174	$2 \cdot 3233$	$0 \cdot 87512$	$12 \cdot 17$	$0 \cdot 367$	-	-	-
$0 \cdot 004672$	$2 \cdot 3303$	0.87528	$12 \cdot 37$	0.367	1.49761	0.33473	$66 \cdot 1$
$0 \cdot 007903$	$2 \cdot 3705$	$0 \cdot 87632$	$12 \cdot 40$	$0 \cdot 367$	1-49790	$0 \cdot 33451$	$65 \cdot 7$
0.008533	$2 \cdot 3804$	$0 \cdot 87653$	$12 \cdot 64$	$0 \cdot 368$			
$0 \cdot 010091$	$2 \cdot 3988$	$0 \cdot 87701$	12.52	$0 \cdot 366$	$1 \cdot 49813$	$0 \cdot 33440$	66.5
II. $4: 4^{\prime}$-Dichloro-2 : $\mathbf{2}^{\prime}$-dinitrodiphenyl.							
$0 \cdot 001697$	$2 \cdot 2866$	0.87437	$8 \cdot 30$	$0 \cdot 35$	$1 \cdot 49740$	$0 \cdot 33489$	79
$0 \cdot 002418$	$2 \cdot 2927$	0.87466	$8 \cdot 35$	$0 \cdot 36$	$1 \cdot 49745$	$0 \cdot 33481$	75
0.005073	$2 \cdot 3161$	0.87570	8.59	$0 \cdot 378$	1.49767	$0 \cdot 33454$	75
$0 \cdot 013879$	$2 \cdot 3915$	0.87914	$8 \cdot 57$	$0 \cdot 386$			
III. 4 : $\mathbf{4}^{\prime}$-Dibromo-2 : 2^{\prime}-dinitrodiphenyl.							
$0 \cdot 004251$	$2 \cdot 3013$	0.87592	6.77	0.503	1.49761	0.33442	77
0.005904	$2 \cdot 3125$	0.87660	6.78	0.478	1.49779	$0 \cdot 33426$	82
$0 \cdot 006431$	$2 \cdot 3148$	$0 \cdot 87682$	6.58	$0 \cdot 473$	-	-	
$0 \cdot 007793$	$2 \cdot 3250$	0.87732	6.74	0.454	$1 \cdot 49789$	0.33405	84
0.012293	$2 \cdot 3551$	0.87970	6.72	$0 \cdot 482$			
IV. $2: 2^{\prime}: 4: \mathbf{4}^{\prime}$-Tetranitrodiphenyl.							
0.003040	$2 \cdot 2913$	0.87509	$6 \cdot 2$	0.431	1.49735	0.33488	71
0.004158	$2 \cdot 2988$	0.87557	$6 \cdot 33$	$0 \cdot 430$	$1 \cdot 49767$	$0 \cdot 33452$	75
0.005733	$2 \cdot 3093$	0.87612	$6 \cdot 42$	$0 \cdot 408$	-	-	-
$0 \cdot 007791$	$2 \cdot 3226$	$0 \cdot 87700$	$6 \cdot 43$	0.413	-	-	-
V. Methyl diphenate.							
0.00537	$2 \cdot 2860$	0.87509	2.51	0.244	$1 \cdot 49752$	$0 \cdot 33469$	$73 \cdot 4$
0.00855	$2 \cdot 2936$	0.87586	$2 \cdot 47$	0.243	$1 \cdot 49777$	$0 \cdot 33453$	$74 \cdot 5$
0.01125	$2 \cdot 2998$	$0 \cdot 87652$	$2 \cdot 43$	$0 \cdot 244$	$1 \cdot 49787$	$0 \cdot 33434$	$74 \cdot 0$
VI. Methyl 4:4'-dibromodiphenate.							
0.00415	$2 \cdot 2785$	0.87549	$1 \cdot 44$	$0 \cdot 472$	1.49758	0.33457	$95 \cdot 9$
0.00671	2.2818	$0 \cdot 87662$	$1 \cdot 38$	$0 \cdot 485$	1-49769	$0 \cdot 33420$	$90 \cdot 3$
0.00739	$2 \cdot 2830$	$0 \cdot 87693$	$1 \cdot 42$	$0 \cdot 488$	1-49779	$0 \cdot 33414$	91.6
0.00850	$2 \cdot 2842$	$0 \cdot 87742$	1.38	$0 \cdot 490$	$1 \cdot 49783$	$0 \cdot 33397$	89.9
VII. Methyl 4: 4'-dinitrodiphenate.							
0.00420	$2 \cdot 2778$	0.87523	1.26	0.345	1.49753	$0 \cdot 33464$	$87 \cdot 1$
0.00476	$2 \cdot 2791$	0.87542	$1 \cdot 37$	$0 \cdot 345$	$1 \cdot 49761$	$0 \cdot 33461$	$88 \cdot 9$
0.00564	$2 \cdot 2801$	0.87575	$1 \cdot 40$	$0 \cdot 349$	$1 \cdot 49766$	$0 \cdot 33451$	87.5
VIII. 2: 2^{\prime}-Dimethyldiphenyl.							
0.00548	$2 \cdot 2749$	0.87434	$0 \cdot 44$	$0 \cdot 117$	-	-	-
0.00849	$2 \cdot 2770$	0.87466	$0 \cdot 53$	$0 \cdot 119$	-	-	-
0.01166	$2 \cdot 2770$	$0 \cdot 87498$	$0 \cdot 39$	$0 \cdot 118$	-	-	-
$0 \cdot 11765$	-	0.88608	-	$0 \cdot 119$	1.50555	$0 \cdot 33505$	61.0
IX. $4: 4^{\prime}$-Dichloro-2 : $\mathbf{2}^{\prime}$-dimethyldiphenyl.							
0.00900	$2 \cdot 2765$	0.87588	$0 \cdot 44$	0.267	1.49784	$0 \cdot 33457$	$71 \cdot 3$
0.01298	$2 \cdot 2783$	0.87682	$0 \cdot 44$	$0 \cdot 268$	$1 \cdot 49813$	$0 \cdot 33437$	$71 \cdot 3$
0.02334	$2 \cdot 2825$	0.87927	$0 \cdot 428$	$0 \cdot 269$	$1 \cdot 49877$	$0 \cdot 33380$	$70 \cdot 8$
0.03462	$2 \cdot 2873$	0.88196	$0 \cdot 428$	$0 \cdot 270$	$1 \cdot 49967$	0.33330	71.5
0.05257	$2 \cdot 2948$	$0 \cdot 88627$	$0 \cdot 424$	$0 \cdot 272$	$1 \cdot 50105$	0.33245	71.8
X. 4: 4'-Dinitro-2: 2'-dimethyldiphenyl.							
0.01268	$2 \cdot 2844$	$0 \cdot 87748$	0.94	$0 \cdot 334$	1.49828	0.33421	$73 \cdot 6$
$0 \cdot 01946$	$2 \cdot 2900$	0.87945	$0 \cdot 90$	$0 \cdot 333$	$1 \cdot 49889$	$0 \cdot 33380$	73.9
			Diphen	anhydride			
$0 \cdot 001186$	$2 \cdot 2901$	0.87415	14.8	$0 \cdot 36$	1.49742	0.33498	66
$0 \cdot 001763$	$2 \cdot 2970$	0.87432	$13 \cdot 9$	$0 \cdot 35$	$1 \cdot 49745$	$0 \cdot 33493$	62
$0 \cdot 001797$	2.2975	0.87431	$13 \cdot 9$	$0 \cdot 34$	$1 \cdot 49744$	$0 \cdot 33493$	62
$0 \cdot 003138$	2-3171	$0 \cdot 87474$	$14 \cdot 2$	$0 \cdot 35$	$1 \cdot 49754$	$0 \cdot 33483$	61

2-Amino-5-nitrotoluene (25 g .) was diazotised with concentrated sulphuric acid (60 c.c.), water ($100 \mathrm{c.c}$.), and sodium nitrite (12 g .) at $0^{\circ}, 350 \mathrm{~g}$. of water added, and the resulting solution poured slowly, with vigorous stirring, into cuprous oxide (25 g .) dissolved in ammonia ($d \mathbf{0 . 8 8}$, 120 c.c.) and water (100 c.c.). Rapid evolution of nitrogen took place, with the formation of a reddish-brown solid. Extraction of this with alcohol gave 12 g . of an orange-coloured solid, m . p. ca. 150°, and the residue, after recrystallisation from acetic acid, yielded 5 g . of pure 4 : 4^{\prime}-dinitro-2 : 2^{\prime}-dimethylazobenzene, m. p. 258°. The material extracted with alcohol was repeatedly recrystallised from acetic acid (after boiling with animal charcoal), from alcohol, and finally from toluene, the m. p. rising to $168-170^{\circ}$. The purification was very wasteful. Ullmann and Frentzel record m. p. 170° for the substance (loc. cit.).

Dipole-moment Measurements.-The necessary observations in benzene solution are tabulated on page 971 under the usual headings. These, and the method of calculation employed, are explained in a recent paper (Le Fèvre and Vine, J., 1937, 1805).

	Mean values.					
	M.	$a \epsilon_{2}$.	β.	P_{1}.	$\left[R_{L}\right]_{\mathbf{D}}$.	μ.
I. 2: $\mathbf{2}^{\prime}$-Dinitrodiphenyl ${ }^{*}$	244	$12 \cdot 43$	$0 \cdot 367$	623	66	$5 \cdot 19$
II. $4: 4^{\prime}$-Dichloro-2 : 2^{\prime}-dinitrodiphenyl	313	8.58	0.378	572	76	4.90
III. $4: 4^{\prime}$-Dibromo-2 : 2^{\prime}-dinitrodiphenyl	402	6.75	0.478	582	81	4.92
IV. 2: $2^{\prime}: 4: 4^{\prime}$-Tetranitrodiphenyl	334	6.42	$0 \cdot 420$	470	74	$4 \cdot 38$
V. Methyl diphenate \dagger..............	270	$2 \cdot 47$	$0 \cdot 244$	$195 \cdot 2$	$74 \cdot 0$	2.42
VI. Methyl 4 : 4^{\prime}-dibromodiphenate	428	$1 \cdot 40$	0.487	187.5	$90 \cdot 6$	$2 \cdot 17$
VII. Methyl 4: 4'-dinitrodiphenate	360	$1 \cdot 37$	0.346	$173 \cdot 2$	87.8	2.03
VIII. 2: $\mathbf{2}^{\prime}$-Dimethyldiphenyl $\ldots . .$.	182	$0 \cdot 45$	$0 \cdot 118$	$70 \cdot 1$	$61 \cdot 0$	0.66
IX. 4: 4^{\prime}-Dichloro-2 : 2^{\prime}-dimethyldiphenyl	251	$0 \cdot 428$	$0 \cdot 269$	$82 \cdot 8$	$71 \cdot 3$	0.75
X. 4: 4^{\prime}-Dinitro-2 : 2^{\prime}-dimethyldiphenyl	272	0.92	0.334	108.8	$73 \cdot 8$	1-30
XI. Diphenic anhydride	224	$14 \cdot 0$	$0 \cdot 35$	640	62	$5 \cdot 29$

* Bretscher (loc. cit.) found $P=596$ c.c., $\mu=5 \cdot 12$, in benzene.
\dagger For benzene solutions Bretscher (loc. cit.) found $P=190 \cdot 3, \mu=2 \cdot 36$, and Weissberger and Williams (Z. physikal. Chem., 1929, B, 3, 367) $P=190, \mu=2.3$.

The Sir William Ramsay and Ralph Forster Laboratories, University College, London.

